CyberPlus

Inheritance & OOP

Inheritance

Inheritance

Inheritance is the process by which new classes called derived classes are created from existing classes called base classes. The derived classes have all the features of the base class and the programmer can choose to add new features specific to the newly created derived class.

For example, a programmer can create a base class named fruit and define derived classes as mango, orange, banana, etc. Each of these derived classes, (mango, orange, banana, etc.) has all the features of the base class (fruit) with additional attributes or features specific to these newly created derived classes. Mango would have its own defined features, orange would have its own defined features, banana would have its own defined features, etc.

This concept of Inheritance leads to the concept of polymorphism.

Features of Inheritance:

1. The derived class inherits all capabilities of the base class.

2. It is possible to add new functionality (both member data and member functions) to the derived classes.

3. The base classes do not change during the process of inheritance.

Advantages of Inheritance:

1.Code reusability:

Inheritance helps the code to be reused in many situations. The base class is defined and once it is compiled, it need not be reworked. Using the concept of inheritance, the programmer can create as many derived classes from the base class as needed while adding specific features to each derived class as needed.

2.Extensibility:

The functionality of the base class can be extended without altering its original source code to suit new needs. We can extend the existing class by adding new data and new methods.

3.Conceptualisation:

Inheritance helps in better understandin and designing of real world problems as they are.

General Format for implementing the concept of Inheritance:

class derived_classname: access specifier baseclassname

Example:

#include <iostream>

using namespace std;

class A

{

 int data;

public:

 void f(int arg) { data = arg; }

 int g() { return data; }

};

class B : public A { };

int main()

{

 B obj;

 obj.f(20);

 cout << obj.g() << endl;

}

Class A is a base class of class B. The names and definitions of the members of class A are included in the definition of class B; class B inherits the members of class A. Class B is derived from class A. Class B contains a subobject of type A.

You can also add new data members and member functions to the derived class. You can modify the implementation of existing member functions or data by overriding base class member functions or data in the newly derived class.

Different forms of inheritance:

The different forms of inheritance are as follows:

1. Simple Inheritance

2. Multilevel Inheritance

3. Hierarchal inheritance

4. Multiple Inheritance

5. Hybrid inheritance

1. Single inheritance:

A derived class with one base class is called single inheritance
Example:

2. Multi level inheritance:

The mechanism of deriving a class from another 'derived class' is known as multi level inheritance
Example:

3. Hierarchical inheritance:

One class may be inherited more than one base class is called hierarchical inheritance
Example:

4. Multiple Inheritance:

One with several base classes is called multiple inheritance

Example:

5. Hybrid inheritance:

One base class deriving more than derived classes is called hybrid inheritance
Example;

Types of inheritance:

The following table indicates how the attributes are inherited in the three different types of inheritance:

Access specifiers in the base class

private
protected
public

private inheritance
The member is inaccessible.
The member is private.
The member is private.

protected inheritance
The member is inaccessible.
The member is protected.
The member is protected.

public inheritance
The member is inaccessible.
The member is protected.
The member is public.

As the table above shows protected members are inherited as protected methods in public inheritance. Therefore we should use the protected label whenever we want to declare a method inaccessible outside the class and not to lose access to it in derived classes. However, losing accessibility can be useful sometimes, because we are encapsulating details in the base class.

Relationships

A-Kind-Of relationship or is-a relationship:

Consider you have to write a drawing program. This program would allow drawing of various objects such as points, circles, rectangles, triangles and many more. For each object you provide a class definition. For example, the point class just defines a point by its coordinates:

 class Point {

 attributes:

 int x, y

 methods:

 setX(int newX)

 getX()

 setY(int newY)

 getY()

 }

You continue defining classes of your drawing program with a class to describe circles. A circle defines a center point and a radius:

 class Circle {

 attributes:

 int x, y,

 radius

 methods:

 setX(int newX)

 getX()

 setY(int newY)

 getY()

 setRadius(newRadius)

 getRadius()

 }

Comparing both class definitions we can observe the following:

· Both classes have two data elements x and y. In the class Point these elements describe the position of the point, in the case of class Circle they describe the circle's center. Thus, x and y have the same meaning in both classes: They describe the position of their associated object by defining a point.

· Both classes offer the same set of methods to get and set the value of the two data elements x and y.

· Class Circle ``adds'' a new data element radius and corresponding access methods.

Knowing the properties of class Point we can describe a circle as a point plus a radius and methods to access it. Thus, a circle is ``a-kind-of'' point. However, a circle is somewhat more ``specialized''.

It is to be read as ``Circle is a-kind-of Point.''

Has-A relationship or class containership:

Here a class contains or owns or has instances of another class. This is called containership.

Example:

class A

{

};

class B

{

A a;

};

In the above example,

1.Class B contains an object of class A

2.class B has an object of class A

3.Object of class A is part of class B.

Example-

class Wheel

{

};

class Twowheeler

{

 Wheel wheel;

};

By this example we can say that call Twowheeler contains an object of class wheel. Or we can say class Twowheeler “has -an” object of class wheel.

Construction and destruction:

In inheritance construction takes place from base to derive. And the constructor called from derived to base.

Example:

#include<iostream>

using namespace std;

class A

{

public:

 A()

 {

 cout<<"A's constructor called\n";

 }

};

class B:public A

{

public:

 B()

 {

 cout<<"B's constructor called\n";

 }

};

main()

{

 B b;

}

output:

A's constructor called

B's constructor called

explanation:

First it calls the B's constructor. B's constructor calls A's constructor so first we receive A's constructor response then B's.

Destruction takes place from derive to base. And the destructor called from derive to base.

#include<iostream>

using namespace std;

class A

{

public:

 ~A()

 {

 cout<<"A's destructor called\n";

 }

};

class B:public A

{

public:

 ~B()

 {

 cout<<"B's destructor called\n";

 }

};

main()

{

 B b;

}

output:

B's destructor called

A's destructor called

Virtual Functions

Virtual Function:

Virtual, as the name implies, is something that exists in effect but not in reality. The concept of virtual function is the same as a function, but it does not really exist although it appears in needed places in a program. The object-oriented programming language C++ implements the concept of virtual function as a simple member function, like all member functions of the class.

In C++, Virtual is Used for polymorphism, which is calling a Derived class function using the Base class pointer.

Definition:

A virtual function is a member function of a class, whose functionality can be over-ridden in its derived classes.It is one that is declared as virtual in the base class using the virtual keyword.

 The virtual nature is inherited in the subsequent derived classes and the virtual keyword need not be re-stated there. The whole function body can be replaced with a new set of implementation in the derived class.

The actual function to be called is decided at run time. The address of the object whose function must be called is assigned to the base class pointer. The base class pointer is used to call the function. Using this method the compiler is made to believe that it is calling a function belonging to the base class. But in reality it may be calling a funtion belonging to any of the derived classes or base class. If there is no function definition in derived class whose object is pointed by base class pointer then it calls the function of base class.

Virtual function is a mechanism to implement the concept of polymorphism (the ability to give different meanings to one function).

Main advantage of virtual functions is to perform late binding. Late binding is the binding at run time.

Binding:

Binding refers to the act of association between two entities.It may be associating an object or a class with its member or associating a function call with function definition. If we can call a method fn() on an object o of a class c, we say that the object o is binded with the method fn(). This happens at compile time and is known as static or compile - time binding. The calls to the virtual member functions are resolved during run-time. This mechanism is known as dynamic binding.

Therefore the main difference between virtual functions and non virtual functions is virtual functions perform late binding where as the non virtual functions perform static binding.

The vital reason for having a virtual function is to implement a different functionality in the derived class.

Properties of Virtual Functions:

·
Dynamic Binding Property:

·
Virtual functions are member functions of a class.

·
Virtual functions are declared with the keyword virtual.

·
Virtual function takes a different functionality in the derived class.

Declaration of Virtual Function:

For example, the general syntax to declare a Virtual Function uses:

class classname //This denotes the base class of C++ virtual function
{
public:

virtual void memberfunctionname() //This denotes the C++ virtual function

{

.............

............

}
};

Working of Virtual Functions:

The following code shows how we can write a virtual function in C++ and then use the same to achieve dynamic or runtime polymorphism.

#include <iostream.h>
class Base
{
public:

virtual void display()

{

 cout<<”\nBase”;

}
};
class Derived : public Base
{
public:

void display()

{

 cout<<”\nDerived”;

}
};
void main()
{

base *ptr = new Derived();

ptr->display();
}

In the above example, the pointer is of type Base but it points to the Derived class object. The method display() is virtual in nature. Hence in order to resolve the virtual method call, the context of the pointer is considered, i.e., the display method of the derived class is called and not that of the base. If the method was non virtual in nature, the display() method of the base class would have been called.

V-table:

When a function has the keyword virtual prepended to its declaration, the C++ compiler knows that function call binding will occur at runtime.

 Since compiler and linker know that a function body address will not be matched with an associated call at compile/link time, it creates a unique VTABLE for each object type that contains virtual functions.

 The virtual table is a lookup table of functions used to resolve function calls in a dynamic/late binding manner. The virtual table sometimes goes by other names, such as “vtable”, “virtual function table”, “virtual method table”, or “dispatch table”.

 First, every class that uses virtual functions (or is derived from a class that uses virtual functions) is given it’s own virtual table. This table is simply a static array that the compiler sets up at compile time. A virtual table contains one entry for Run time type identifier(RTTI), one entry for destructor and entries for each virtual function that can be called by objects of the class. RTTI is the type identifier to specify the type of object which the base class points to.And rest of Each entry in this table is simply a function pointer that points to the most-derived function accessible by that class. So at runtime, we are guaranteed that our code will always have an associated function body for each function call.

Second, the compiler also adds a hidden pointer to the base class, which we will call *vptr. *vptr is set (automatically) when a class instance is created so that it points to the virtual table for that class. Unlike the *this pointer, which is actually a function parameter used by the compiler to resolve self-references, *vptr is a real pointer. Consequently, it makes each class object allocated bigger by the size of one pointer. The size of one pointer depends on the size of an integer. Note that in DOS based systems the size of a pointer is 2 bytes whereas in UNIX based systems it is 4 bytes.

The vptr is inherited by derived classes because it is a real pointer.

The following example is to clarify the concept.

class Base

{

public:

 virtual void function1() {}

 virtual void function2() {}

};

class D1: public Base

{

public:

virtual void function1() {} //no need to use virtual keyword again

};

class D2: public Base

{

public:

virtual void function2() {} //no need to use virtual keyword again.

};

Because there are 3 classes here, the compiler will set up 3 virtual tables: one for Base, one for D1, and one for D2.The compiler also adds a hidden pointer to the most base class that uses virtual functions. Although the compiler does this automatically, we’ll put it in the next example just to show where it’s added:

class Base

{

public:

 FunctionPointer *vptr;

//It is of type void*

 virtual void function1() {}

 virtual void function2() {}

};

class D1: public Base

{

public:

virtual void function1() {}

};

class D2: public Base

{

public:

virtual void function2() {}

};

When a class object is created, vptr is set to point to the virtual table for that class. For example, when a object of type Base is created, vptr is set to point to the virtual table for Base. When objects of type D1 or D2 are constructed, vptr is set to point to the virtual table for D1 or D2 respectively.

There are only two virtual functions here, each virtual table will have four entries (one for RTTI, one for Destructor, one for function1(), and one for function2()). Even though there is no virtual destructor the second entry is reserved for the destructor. Remember that when these virtual tables are filled out, each entry is filled out with the most-derived function an object of that class type can call.

Base’s virtual table is simple. An object of type Base can only access the members of Base. Base has no access to D1 or D2 functions. Consequently, the entry for function1 points to Base::function1(), and the entry for function2 points to Base::function2().

D1’s virtual table is slightly more complex. An object of type D1 can access members of both D1 and Base. However, D1 has overridden function1(), making D1::function1() more derived than Base::function1(). Consequently, the entry for function1 points to D1::function1(). D1 hasn’t overridden function2(), so the entry for function2 will point to Base::function2().

D2’s virtual table is similar to D1, except the entry for function1 points to Base::function1(), and the entry for function2 points to D2::function2().

Here’s a picture of this graphically:

The vptr in each class points to the virtual table for that class. The entries in the virtual table point to the most-derived version of the function objects of that class are allowed to call.

So consider what happens when we create an object of type D1:

int main()

{

 D1 cClass;

}

Because cClass is a D1 object, cClass has it’s vptr set to the D1 virtual table.

Now, let’s set a base pointer to D1:

int main()

{

 D1 cClass;

 Base *pClass = &cClass;

}

Note that because pClass is a base pointer, it only points to the Base portion of cClass. That means if D1 contains any fucntion funtion3() which is not in base class then it can't call using pClass eventhough it points to cClass. However, also note that vptr is in the Base portion of the class, so pClass has access to this pointer. Finally, note that pClass->vptr points to the D1 virtual table Consequently, even though pClass is of type Base, it still has access to D1’s virtual table.

So if we try to call pClass->function1(),

int main()

{

 D1 cClass;

 Base *pClass = &cClass;

 pClass->function1();

}

First, the program recognizes that function1() is a virtual function. Second, uses pClass->vptr to get to D1’s virtual table. Third, it looks up which version of function1() to call in D1’s virtual table. This has been set to D1::function1(). Therefore, pClass->function1() resolves to D1::function1()

int main()

{

 Base cClass;

 Base *pClass = &cClass;

 pClass->function1();

}

In this case, when cClass is created, vptr points to Base’s virtual table, not D1’s virtual table. Consequently, pClass->vptr will also be pointing to Base’s virtual table. Base’s virtual table entry for function1() points to Base::function1(). Thus, pClass->function1() resolves to Base::function1(), which is the most-derived version of function1() that a Base object should be able to call.

By using these tables, the compiler and program are able to ensure function calls resolve to the appropriate virtual function, even if you’re only using a pointer or reference to a base class.

Calling a virtual function is slower than calling a non-virtual function for a couple of reasons: First, we have to use the *vptr to get to the appropriate virtual table. Second, we have to index the virtual table to find the correct function to call. Only then can we call the function. As a result, we have to do 3 operations to find the function to call, as opposed to 2 operations for a normal indirect function call, or one operation for a direct function call. However, with modern computers, this added time is usually fairly insignificant.

Virtual Constructors and Destructors

virtual constructor:

A constructor can not be virtual. We have 2 reasons for that.

4. Since all the functions in the Public, protected are inherited we may have virtual functions. But constructor of a class is never and ever extended by a derived, hence we will never heed to have a Virtual constructor. That means we will never need to call a derived class constructor using the Base class Pointer

5. Second one is, at the time when the constructor is invoked the virtual table would not be available in the memory. Because virtual table will be created only when the object is created and object is created only when the constructor is called. (To call virtual contructor, the V-table should be already in memory. Because all the virtual functions are stored there. To access those virtual functions , each object has vptr(virtual pointer). So vptr is created per object. vptr is initialized by constructor of that class. But when the constructor is created virtual then how the vptr is intialized.)

So constructors can not be virtual.

Virtual destructor:

A virtual destructor is one that is declared as virtual in the base class and is used to ensure that destructors are called in the proper order. It is to be remembered that destructors are called in the reverse order of inheritance. If a base class pointer points to a derived class object and we some time later use the delete operator to delete the object, then the derived class destructor is not called. Refer to the code that follows:

#include <iostream.h>
class base
{
public:

~base()

{

}
};

class derived : public base
{
public:

~derived()

{

}
};

void main()
{

base *ptr = new derived();

// some code

delete ptr;
}

In this case the type of the pointer would be considered. Hence as the pointer is of type base, the base class destructor would be called but the derived class destructor would not be called at all. The result is memory leak. In order to avoid this, we have to make the destructor virtual in the base class. This is shown in the example below:

#include <iostream.h>
class base
{
public:

virtual ~base()

{

}
};

class derived : public base
{
public:

~derived()

{

}

};
void main()
{

base *ptr = new derived();

 // some code

 delete ptr;
}

Now it will call the derived class destructor first and then base class destructor.

Pure Virtual Functions

Pure Virtual Function:

A pure virtual function or pure virtual method is a virtual function that is required to be implemented by a derived class that is not abstract.

Pure virtual methods typically have a declaration (signature) and no definition (implementation).

Abstract Class:

An abstract class is a class that is designed to be specifically used as a base class. An abstract class contains at least one pure virtual function. The abstract classes cannot be instantiated directly, and a derived class of an abstract class can only be instantiated directly if all inherited pure virtual methods have been implemented by that class or a parent class.

In C++, pure virtual functions are declared using a special syntax [= 0] as demonstrated below.

class Abstract

{

public:

virtual void pure_virtual() = 0;

};

void Abstract::pure_virtual()

{

 // do something

}

class Child : public Abstract

{

virtual void pure_virtual(); // no longer abstract, this class may be

 // instantiated.

};

void Child::pure_virtual()

{

Abstract::pure_virtual(); // the implementation in the abstract class

 // is executed

}

If a class has any unoverridden pure virtuals, it is an "abstract class" and we can't create objects of that type.

Consider the following example.

class AbstractClass

{

 public:

 // declare a pure virtual function:

 // this class is now abstract

 virtual void f(int) = 0;

};

class StillAbstract : public AbstractClass

{

 // does not override f(int),

 // so this class is still abstract

};

class Concrete : public StillAbstract

{

public:

 // finally overrides f(int),

 // so this class is concrete

void f(int)

{

/*

...

*/

}

};

void main()

{

 AbstractClass a; // error, abstract class

 StillAbstract b; // error, abstract class

 Concrete c; // ok, concrete class

}

The other concept of pure virtual function remains the same as described in the previous section of virtual function.

To understand the declaration and usage of Pure Virtual Function, refer to this example:

class Shape
{
public:

virtual void display()=0; //Denotes pure virtual Function Definition
};

class Circle:public Shape
{
public:

void display()

{

cout<<"Circle"<<endl;

// some body

}
};

class Rectangle:public Shape
{
public:

void display()

{

cout<<"Rectangle"<<endl;

//some body

}
};

void main()
{

Shape* arra[5];

Circle c1;

Rectangle r1;

arra[0]=&c1;

arra[1]=&r1;

arra[0]->display();

arra[1]->display();
}

Since in the above display() of shape has no body, the pure virtual function display() is declared with notation =0 in the base class Shape. The two derived class named Circle and Rectangle are derived from the base class Shape. The pure virtual function display() takes up new definition. In the main function, a list of pointers is defined to the base class.

Two objects named c1 and r1 are defined for derived classes Circle and Rectangle. The address of the objects c1 and r2 are stored in the array pointers which are then used for accessing the pure virtual function display() belonging to both the derived class Circle and Rectangle and thus, the output is as shown below.

Circle

Rectangle

Some programmers might want to remove this pure virtual function from the base class as it has no body but this would result in an error. Without the declaration of the pure virtual function in the base class, accessing statements of the pure virtual function such as, arra[0]->display() and arra[1]->display() would result in an error. The pointers should point to the base class Shape. Special care must be taken not to remove the statement of declaration of the pure virtual function in the base class.

Generally we use pure virtual functions when we don't know the code to write. That means if the code depends up on the derived class.

In the above example, all shapes may contain same features(for example color). So we can derive many shapes from Shape class with extra features. For example, Circle can have radious and Rectangle can have length and breadth. If it is virtual function then we can provide definition in the Shape class for display.If we don't provide definition in the derived classes then it has to call the base class function. But it doesn't know what it has to display with out having radius of a circle for example. Then it will generate a logical error.

The main advantage of using pure virtual function instead of using virtual function is if there is no definition in derived class then it will give syntax error rather than logical error.

Type Casting

Definition:

Converting an expression of a given type into another type is known as type-casting.

Basically there are 2 types of type conversion. They are

· Implicit Conversion

· Explicit Conversion

Implicit conversion

Implicit conversions do not require any operator. They are automatically performed when a value is copied to a compatible type.

For example:

short a=2000;

int b;

b=a;

Here, the value of 'a' has been promoted from short to int and we have not had to specify any type-casting operator. This is known as a standard conversion.

Implicit conversions also include constructor or operator conversions, which affect classes that include specific constructors or operator functions to perform conversions. For example:

class A

{

};

class B

{

public:

 B (A a)

 {

 }

};

A a;

B b=a;

Here, a implicit conversion happened between objects of class A and class B, because B has a constructor that takes an object of class A as parameter. Therefore implicit conversions from A to B are allowed.

Explicit conversion

C++ is a strong-typed language. Many conversions, specially those that imply a different interpretation of the value, require an explicit conversion.

We have 2 notations for explicit type conversion:

6. functional notation

7. c-like casting

For example,

short a=2000;

int b;

b = (int) a; // c-like cast notation

b = int (a); // functional notation

C++ supports both notations.

These explicit conversion operators are enough for most needs with fundamental data types.

They may not enough in all cases.

In order to satisfy all cases we have four specific casting operators:

1. dynamic_cast

2. reinterpret_cast

3. static_cast

4. const_cast.

Format:

dynamic_cast<new_type>(expression)
reinterpret_cast<new_type>(expression)
static_cast<new_type>(expression)
const_cast <new_type> (expression)

The traditional type-casting equivalents to these expressions would be:

(new_type) expression
new_type (expression)

dynamic_cast:

dynamic_cast can be used only with pointers and references to objects. Its purpose is to ensure that the result of the type conversion is a valid complete object of the requested class.

Therefore, dynamic_cast is always successful when we cast a class to one of its base classes.

For example,

class A

{

};

class B:public A

{

};

class C:public A

{

};

class D:public B

{

};

A *ap=new B();

B *bp;

bp=ap;

//wrong:'bp' and 'ap' are pointers of different classes. Even though 'ap' points to B compiler doesn't

//know.

bp=(B*)ap;
//ok: Now explicitely we converted 'ap' to B*.

In the compile time it works. But in the run time it may get error in the following cases.

If ap is a pointer to A object.

If ap is a pointer to C object.

That is why we use dynamic casting. If we use dynamic casting then it will assign a NULL pointer instead of giving errors.

bp=dynamic_cast<B*>(ap);

Now

If ap is a pointer to B then it works.

If ap is a pointer to D then it works.

If ap is a pointer to C then it returns NULL to bp.

If ap is a pointer to A then it returns NULL to bp.

When a class is polymorphic, dynamic_cast performs a special checking during runtime to ensure that the expression yields a valid complete object of the requested class:

// dynamic_cast

#include <iostream>

#include <exception>

using namespace std;

class CBase { virtual void dummy() {} };

class CDerived: public CBase { int a; };

int main () {

 try {

 CBase * pba = new CDerived;

 CBase * pbb = new CBase;

 CDerived * pd;

 pd = dynamic_cast<CDerived*>(pba);

 if (pd==0) cout << "Null pointer on first type-cast" << endl;

 pd = dynamic_cast<CDerived*>(pbb);

 if (pd==0) cout << "Null pointer on second type-cast" << endl;

 } catch (exception& e) {cout << "Exception: " << e.what();}

 return 0;

}

Here NULL pointer on second type_cast

Note:

dynamic_cast requires the Run-Time Type Information (RTTI) to keep track of dynamic types. So the base class must contain virtual members. Otherwise it will do static_cast only. Some compilers support this feature as an option which is disabled by default. This must be enabled for runtime type checking using dynamic_cast to work properly.

static_cast

static_cast can perform conversions between pointers to related classes, not only from the derived class to its base, but also from a base class to its derived. This ensures that at least the classes are compatible if the proper object is converted, but no safety check is performed during runtime to check if the object being converted is in fact a full object of the destination type. Therefore, it is up to the programmer to ensure that the conversion is safe.

class CBase {};

class CDerived: public CBase {};

CBase * a = new CBase;

CDerived * b = static_cast<CDerived*>(a);

This would be valid, although b would point to an incomplete object of the class and could lead to runtime errors if dereferenced.

static_cast can also be used to perform any other non-pointer conversion that could also be performed implicitly, like for example standard conversion between fundamental types:

double d=3.14159265;

int i = static_cast<int>(d);

or

int i=(int)d;

or

int i=int(d);

Or any conversion between classes with explicit constructors or operator functions as described in "implicit conversions" above.

Consider other example where static_cast must be used.

Enum Day

{

sun,mon,tue,wed,thu,fri,sat

};

Day d=tue;
//correct

d=2;
//wrong

d=(Day)2;
//wrong

d=Day(2);
//wrong

d=static_cast<day>(2);
//correct

reinterpret_cast

reinterpret_cast converts any pointer type to any other pointer type, even of unrelated classes. The operation result is a simple binary copy of the value from one pointer to the other. All pointer conversions are allowed: neither the content pointed nor the pointer type itself is checked.

It can also cast pointers to or from integer types. The format in which this integer value represents a pointer is platform-specific. The only guarantee is that a pointer cast to an integer type large enough to fully contain it, is granted to be able to be cast back to a valid pointer.

The conversions that can be performed by reinterpret_cast but not by static_cast have no specific uses in C++ are low-level operations, whose interpretation results in code which is generally system-specific, and thus non-portable. For example:

class A {};

class B {};

A * a = new A;

B * b = reinterpret_cast<B*>(a);

This is valid C++ code, although it does not make much sense, since now we have a pointer that points to an object of an incompatible class, and thus dereferencing it is unsafe.

Consider another example.

char *ptr;

ptr=0x1234;
//wrong in C++. Because ptr is character type and 0x1234 is

//integer type.

ptr=reinterpret_cast<char *>(0x1234);
//correct.

const_cast:

This type of casting manipulates the constness of an object, either to be set or to be removed. For example,

1.
const int x;

const int *y1=&x;

int *y2;

y2=y1;

//wrong

y2=const_cast<int *>(y1);//Here sets the constness to y1

2.
void f(const int *y)

{

g(y);
//wrong

g(const_cast <int*>(y));
//here removes the constness from y

}

void g(int *z)

{

}

A

B

A

B

C

A

B

C

A

B

C

B

C

A

D

Page: 26

