CyberPlus

System Calls and Sockets

System Calls

1)OPEN

open and possibly create a file or device

SYNOPSIS

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int
open(const char *pathname, int flags);

int
open(const char *pathname, int flags, mode_t mode);

DESCRIPTION

Given a pathname for a file, open() returns a file descriptor, a small, non-negative integer.

The parameter flags must include one of the following access modes:

O_RDONLY
Opening file in read only.

O_WRONLY
Opening file in write only.

O_RDWR
Opening file in read/write.

The list of file creation flags and file status flags is as follows:

O_APPEND

 The file is opened in append mode.

O_CREAT

 If the file does not exist it will be created.

O_EXCL

When used with O_CREAT, if the file already exists it is an error and the open() will fail.

O_TRUNC

If the file already exists and is a regular file and the open mode allows writing (i.e., is O_RDWR or O_WRONLY) it will be truncated to length 0.

O_NONBLOCK

When possible, the file is opened in non-blocking mode. Neither the open() nor any subsequent operations on the file descriptor which is returned will cause the calling process to wait.

 The argument mode specifies the permissions to use in case a new file is created.

S_IRWXU

 00700 user (file owner) has read, write and execute permission

S_IRUSR

 00400 user has read permission

S_IWUSR

 00200 user has write permission

S_IXUSR

 00100 user has execute permission

S_IRWXG

 00070 group has read, write and execute permission

S_IRGRP

 00040 group has read permission

S_IWGRP

 00020 group has write permission

S_IXGRP

 00010 group has execute permission

S_IRWXO

 00007 others have read, write and execute permission

S_IROTH

 00004 others have read permission

S_IWOTH

 00002 others have write permission

S_IXOTH

 00001 others have execute permission

RETURN VALUE

 open() return the new file descriptor, or -1 if an error occurred.

2)CREAT

 creat - open and possibly create a file or device

SYNOPSIS

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

int creat(const char *pathname, mode_t mode);

DESCRIPTION

creat() is equivalent to open() with flags equal to O_CREAT|O_WRONLY|O_TRUNC.

RETURN VALUE

 creat() return the new file descriptor, or -1 if an error occurred .

3)CLOSE

close a file descriptor.

SYNOPSIS

 #include <unistd.h>

 int close(int fd);

DESCRIPTION

close() closes a file descriptor, so that it no longer refers to any file and may be reused.

RETURN VALUE

close() returns zero on success. On error, -1 is returned.

4)READ

read from a file descriptor

SYNOPSIS

#include <unistd.h>

ssize_t read(int fd, void *buf, size_t count);

DESCRIPTION

 read() attempts to read up to count bytes from file descriptor fd into the buffer starting at buf.If count is zero, read() returns zero and has no other results. If count is greater than SSIZE_MAX, the result is unspecified.

RETURN VALUE

On success, the number of bytes read is returned (zero indicates end of file). It is not an error if this number is smaller than the number of bytes requested;

On error, -1 is returned, and errno is set appropriately. In this case it is left unspecified whether the file position (if any) changes.

5)WRITE

write - send a message to another user

SYNOPSIS

 #include <unistd.h>

 ssize_t write(int fd, const void *buf, size_t count);

DESCRIPTION

write() writes up to count bytes to the file referenced by the file descriptor fd from the buffer starting at buf.

RETURN VALUE

On success, the number of bytes written are returned (zero indicates nothing was written).

On error, -1 is returned, and errno is set appropriately.

6)LSEEK

lseek - reposition read/write file offset

SYNOPSIS

#include <sys/types.h>

#include <unistd.h>

off_t lseek(int fildes, off_t offset, int whence);

DESCRIPTION

The lseek() function repositions the offset of the open file associated with the file descriptor fildes

to the argument offset according to the directive whence as follows:

SEEK_SET

The offset is set to offset bytes.

SEEK_CUR

The offset is set to its current location plus offset bytes.

SEEK_END

 The offset is set to the size of the file plus offset bytes.

The lseek() function allows the file offset to be set beyond the end of the file (but this does not change the size of the file). If data is later written at this point, subsequent reads of the data in the gap (a "hole") return null bytes (’\0’) until data is actually written into the gap.

RETURN VALUE

Upon successful completion, lseek() returns the resulting offset location as measured in bytes from the beginning of the file.

Otherwise, a value of (off_t)-1 is returned and errno is set to indicate the error.

7)dup2

 dup2 - duplicate a file descriptor

SYNOPSIS

#include <unistd.h>

int dup2(int oldfd, int newfd);

DESCRIPTION

dup2() create a copy of the file descriptor oldfd. After a successful return from dup2(), the old and new file descriptors may be used interchangeably.They refer to the same open file description and thus share file offset and file status flags; for example, if the file offset is modified by using lseek() on one of the descriptors, the offset is also changed for the other. dup2() makes newfd be the copy of oldfd, closing newfd first if necessary.

RETURN VALUE

dup2() return the new descriptor, or -1 if an error occurred.

8)FCNTL

fcntl - manipulate file descriptor

SYNOPSIS

#include <unistd.h>

#include <fcntl.h>

int fcntl(int fd, int cmd);

int fcntl(int fd, int cmd, long arg);

int fcntl(int fd, int cmd, struct flock *lock);

DESCRIPTION

fcntl() performs one of the operations described below on the open file descriptor fd. The operation is determined by cmd.

RETURN VALUE

 For a successful call, the return value depends on the operation:

F_DUPFD The new descriptor.

F_GETFD Value of flags.

F_GETFL Value of flags.

F_GETOWN Value of descriptor owner.

F_GETSIG Value of signal sent when read or write becomes possible, or zero for traditional SIGIO

behaviour. All other commands Zero. On error, -1 is returned, and errno is set appropriately.

9)STAT , FSTAT and LSTAT

 stat, fstat, lstat - get file status

SYNOPSIS

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

int stat(const char *path, struct stat *buf);

int fstat(int filedes, struct stat *buf);

int lstat(const char *path, struct stat *buf);

DESCRIPTION

These functions return information about a file. No permissions are required on the file itself, but —

 in the case of stat() and lstat() — execute (search) permission is required on all of the directories in

path that lead to the file.

stat() stats the file pointed to by path and fills in buf.

lstat() is identical to stat(), except that if path is a symbolic link, then the link itself is stat-ed, not the file that it refers to.

fstat() is identical to stat(), except that the file to be stat-ed is specified by the file descriptor filedes. All of these system calls return a stat structure, which contains the following fields:

struct stat {

 dev_t st_dev; /* ID of device containing file */

 ino_t st_ino; /* inode number */

 mode_t st_mode; /* protection */

 nlink_t st_nlink; /* number of hard links */

 uid_t st_uid; /* user ID of owner */

 gid_t st_gid; /* group ID of owner */

 dev_t st_rdev; /* device ID (if special file) */

 off_t st_size; /* total size, in bytes */

 blksize_t st_blksize; /* blocksize for filesystem I/O */

 blkcnt_t st_blocks; /* number of blocks allocated */

 time_t st_atime; /* time of last access */

 time_t st_mtime; /* time of last modification */

 time_t st_ctime; /* time of last status change */

 };

The st_dev field describes the device on which this file resides.

The st_rdev field describes the device that this file (inode) represents.

The st_size field gives the size of the file (if it is a regular file or a symbolic link) in bytes. The size of a symlink is the length of the pathname it contains, without a trailing null byte.

The st_blocks field indicates the number of blocks allocated to the file, 512-byte units. (This may be smaller than st_size/512, for example, when the file has holes.)

The st_blksize field gives the "preferred" blocksize for efficient file system I/O. (Writing to a file in smaller chunks may cause an inefficient read-modify-rewrite.)

The field st_atime is changed by file accesses,

The field st_mtime is changed by file modifications, Moreover, st_mtime of a directory is changed by the creation or deletion of files in that directory. The st_mtime field is not changed for changes in owner, group, hard link count, or mode.

The field st_ctime is changed by writing or by setting inode information (i.e., owner, group, link count, mode, etc.).

The following POSIX macros are defined to check the file type using the st_mode field:

S_ISREG(m)
is it a regular file?

S_ISDIR(m)
directory?

S_ISCHR(m)
character device?

S_ISBLK(m)
block device?

S_ISFIFO(m) FIFO (named pipe)?

S_ISLNK(m)
symbolic link?

S_ISSOCK(m)
socket?

The following flags are defined for the st_mode field:

S_IFMT 0170000 bitmask for the file type bitfields

S_IFSOCK 0140000 socket

S_IFLNK 0120000 symbolic link

S_IFREG 0100000 regular file

S_IFBLK 0060000 block device

S_IFDIR 0040000 directory

S_IFCHR 0020000 character device

S_IFIFO 0010000 FIFO

S_ISUID 0004000 set UID bit

S_ISGID 0002000 set-group-ID bit (see below)

S_ISVTX 0001000 sticky bit (see below)

S_IRWXU 00700 mask for file owner permissions

S_IRUSR 00400 owner has read permission

S_IWUSR 00200 owner has write permission

S_IXUSR 00100 owner has execute permission

S_IRWXG 00070 mask for group permissions

S_IRGRP 00040 group has read permission

S_IWGRP 00020 group has write permission

S_IXGRP 00010 group has execute permission

S_IRWXO 00007 mask for permissions for others (not in group)

S_IROTH 00004 others have read permission

S_IWOTH 00002 others have write permission

S_IXOTH 00001 others have execute permission

RETURN VALUE

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

10)ACCESS

access - check user’s permissions for a file.

SYNOPSIS

#include <unistd.h>

int access(const char *pathname, int mode);

DESCRIPTION

access() checks whether the process would be allowed to read, write or test for existence of the file (or other file system object) whose name is pathname. If pathname is a symbolic link permissions of the file referred to by this symbolic link are tested.

mode is a mask consisting of one or more of R_OK, W_OK, X_OK and F_OK.

R_OK, W_OK and X_OK request checking whether the file exists and has read, write and execute permissions, respectively.

F_OK just requests checking for the existence of the file.

The tests depend on the permissions of the directories occurring in the path to the file, as given in pathname, and on the permissions of directories and files referred to by symbolic links encountered on the way.

The check is done with the process’s real UID and GID, rather than with the effective IDs as is done when actually attempting an operation. This is to allow set-user-ID programs to easily determine the invoking user’s authority.

Only access bits are checked, not the file type or contents. Therefore, if a directory is found to be "writable," it probably means that files can be created in the directory, and not that the directory can be written as a file. Similarly, a DOS file may be found to be "executable," but the execve() call will still fail.

If the process has appropriate privileges, an implementation may indicate success for X_OK even if none of the execute file permission bits are set.

RETURN VALUE

On success (all requested permissions granted), zero is returned. On error (at least one bit in mode asked for a permission that is denied, or some other error occurred), -1 is returned.

11)TRUNCATE and FTRUNCATE

 truncate, ftruncate - truncate a file to a specified length

SYNOPSIS

#include <unistd.h>

#include <sys/types.h>

int truncate(const char *path, off_t length);

int ftruncate(int fd, off_t length);

DESCRIPTION

The truncate() and ftruncate() functions cause the regular file named by path or referenced by fd to be truncated to a size of precisely length bytes. If the file previously was larger than this size, the extra data is lost. If the file previously was shorter, it is extended, and the extended part reads as null bytes (’\0’). The file offset is not changed. With ftruncate(), the file must be open for writing; with truncate(), the file must be writable.

RETURN VALUE

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

12)UNLINK

unlink - delete a name and possibly the file it refers to

SYNOPSIS

#include <unistd.h>

int unlink(const char *pathname);

DESCRIPTION

unlink() deletes a name from the filesystem. If that name was the last link to a file and no processes have the file open the file is deleted and the space it was using is made available for reuse.

If the name was the last link to a file but any processes still have the file open the file will remain in existence until the last file descriptor referring to it is closed.

If the name referred to a symbolic link the link is removed.

If the name referred to a socket, fifo or device the name for it is removed but processes which have the object open may continue to use it.

RETURN VALUE

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

13)REMOVE

remove - delete a name and possibly the file it refers to

SYNOPSIS

#include <stdio.h>

int remove(const char *pathname);

DESCRIPTION

remove() deletes a name from the filesystem. It calls unlink() for files, and rmdir() for directories.

If the removed name was the last link to a file and no processes have the file open the file is deleted and the space it was using is made available for reuse.

If the name was the last link to a file but any processes still have the file open the file will remain in existence until the last file descriptor referring to it is closed.

If the name referred to a symbolic link the link is removed.

If the name referred to a socket, fifo or device the name for it is removed but processes which have the object open may continue to use it.

RETURN VALUE

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

13)RENAME

rename - change the name or location of a file

SYNOPSIS

#include <stdio.h>

int rename(const char *oldpath, const char *newpath);

DESCRIPTION

rename() renames a file, moving it between directories if required.

oldpath – name of the file to be renamed.

newpath - any file name not existed.

RETURN VALUE

On success, zero is returned. On error, -1 is returned.

14)MKDIR

mkdir - create a directory

SYNOPSIS

#include <sys/stat.h>

#include <sys/types.h>

int mkdir(const char *pathname, mode_t mode);

DESCRIPTION

mkdir() attempts to create a directory named pathname.The parameter mode specifies the permissions to use.

 RETURN VALUE

mkdir() returns zero on success, and -1 if an error occurred .

15) RMDIR

rmdir - delete a directory

 SYNOPSIS

#include <unistd.h>

int rmdir(const char *pathname);

DESCRIPTION

rmdir() deletes a directory, which must be empty.

RETURN VALUE

On success, zero is returned. On error, -1 is returned.

16) OPENDIR

 opendir - open a directory

 SYNOPSIS

#include <sys/types.h>

#include <dirent.h>

DIR *opendir(const char *name);

DESCRIPTION

The opendir() function opens a directory stream corresponding to the directory name, and returns a pointer to the directory stream.

RETURN VALUE

The opendir() function returns a pointer to the directory stream. On error, NULL is returned.

17)READDIR

readdir - read a directory

 SYNOPSIS

#include <sys/types.h>

#include <dirent.h>

struct dirent *readdir(DIR *dir);

DESCRIPTION

The readdir() function returns a pointer to a dirent structure representing the next directory entry in the directory stream pointed to by dir. It returns NULL on reaching the end-of-file or if an error occurred.

On Linux, the dirent structure is defined as follows:

struct dirent

{

ino_t

d_ino; /* inode number */

char

d_name[256]; /* filename */

};

 RETURN VALUE

The readdir() function returns a pointer to a dirent structure, or NULL if an error occurs.

18) REWINDDIR

rewinddir - reset directory stream

SYNOPSIS

#include <sys/types.h>

#include <dirent.h>

void rewinddir(DIR *dir);

DESCRIPTION

The rewinddir() function resets the position of the directory stream dir to the beginning of the directory.

RETURN VALUE

The rewinddir() function returns no value.

19)CLOSEDIR

closedir- close a directory

SYNOPSIS

#include <sys/types.h>

#include <dirent.h>

int closedir(DIR *dir);

DESCRIPTION

The closedir() function closes the directory stream associated with dir. The directory stream descriptor dir is not available after this call.

RETURN VALUE

The closedir() function returns 0 on success. On error, -1 is returned.

20)CHDIR

chdir- change working directory.

SYNOPSIS

#include <unistd.h>

int chdir(const char *path);

DESCRIPTION

chdir() changes the current working directory to that specified in path.

RETURN VALUE

On success, zero is returned. On error, -1 is returned.

21)GETCWD

getcwd- Get current working directory.

SYNOPSIS

#include <unistd.h>

char *getcwd(char *buf, size_t size);

DESCRIPTION

The getcwd() function copies an absolute pathname of the current working directory to the array pointed

 to by buf, which is of length size (maximum 256 bytes).

RETURN VALUE

NULL on failure with errno set accordingly, and buf on success.

22)GETPWUID and GETPWNAM

getpwuid , getpwnam - get password file entry

SYNOPSIS

#include <sys/types.h>

#include <pwd.h>

struct passwd *getpwnam(const char *name);

struct passwd *getpwuid(uid_t uid);

DESCRIPTION

The getpwuid() function returns a pointer to a structure containing the broken-out fields of the record in the password database that matches the user ID uid.

The getpwnam() function returns a pointer to a structure containing the broken-out fields of the record in the password database (e.g., the local password file /etc/passwd, NIS, and LDAP) that matches the username name.

The passwd structure is defined in <pwd.h> as follows:

struct passwd

{

 char *pw_name; /* user name */

 char *pw_passwd; /* user password */

 uid_t pw_uid; /* user ID */

 gid_t pw_gid; /* group ID */

 char *pw_gecos; /* real name */

 char *pw_dir; /* home directory */

 char *pw_shell; /* shell program */

};

RETURN VALUE

The getpwnam() and getpwuid() functions return a pointer to a passwd structure, or NULL if the matching entry is not found or an error occurs.

23)GETPWENT , SETPWENT and ENDPWENT

getpwent, setpwent, endpwent - get password file entry

SYNOPSIS

#include <sys/types.h>

#include <pwd.h>

struct passwd *getpwent(void);

void setpwent(void);

void endpwent(void);

DESCRIPTION

The getpwent() function returns a pointer to a structure containing the broken-out fields of a record from the password database (e.g., the local password file /etc/passwd, NIS, and LDAP). The first time it is called it returns the first entry; thereafter, it returns successive entries.

The setpwent() function rewinds to the beginning of the password database.

The endpwent() function is used to close the password database after all processing has been performed.

RETURN VALUE

The getpwent() function returns a pointer to a passwd structure, or NULL if there are no more entries or an error occurs.

24)UNAME

uname - get name and information about current kernel

SYNOPSIS

#include <sys/utsname.h>

int uname(struct utsname *buf);

DESCRIPTION

uname() returns system information in the structure pointed to by buf.

The utsname struct is defined in <sys/utsname.h>:

struct utsname {

 char sysname[];

 char nodename[];

 char release[];

 char version[];

 char machine[];

 #ifdef _GNU_SOURCE

 char domainname[];

 #endif

};

 The length of the arrays in a struct utsname is unspecified; the fields are terminated by a null byte

 (’’ ’).

RETURN VALUE

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

25)GETHOSTNAME

gethostname - get/set host name

SYNOPSIS

#include <unistd.h>

int gethostname(char *name, size_t len);

DESCRIPTION

These system calls are used to access or to change the host name of the current processor. The gethostname() system call returns a null-terminated hostname in the array name that has a length of len bytes. In case the null-terminated hostname does not fit, no error is returned, but the hostname is truncated. It is unspecified whether the truncated hostname will be null-terminated.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

26)TIME

time - get time in seconds

SYNOPSIS

#include <time.h>

time_t time(time_t *t);

DESCRIPTION

time() returns the time since the Epoch (00:00:00 UTC, January 1, 1970), measured in seconds.

If t is non-NULL, the return value is also stored in the memory pointed to by t.

RETURN VALUE

On success, the value of time in seconds since the Epoch is returned. On error, ((time_t)-1) is returned.

27)GMTIME,LOCALTIME,MKTIME,ASCTIME and CTIME

gmtime, localtime, mktime, asctime , ctime - transform date and time to broken-down time or ASCII.

SYNOPSIS

#include <time.h>

struct tm *gmtime(const time_t *timep);

struct tm *localtime(const time_t *timep);

char *asctime(const struct tm *tm);

time_t mktime(struct tm *tm);

char *ctime(const time_t *timep);

DESCRIPTION

The ctime(), gmtime() and localtime() functions all take an argument of data type time_t which represents calendar time. When interpreted as an absolute time value, it represents the number of seconds elapsed since 00:00:00 on January 1, 1970, Coordinated Universal Time (UTC).

The asctime() and mktime() functions both take an argument representing broken-down time which is a representation separated into year, month, day, etc.

Broken-down time is stored in the structure tm which is defined in <time.h> as follows:

struct tm {

 int
tm_sec; /* seconds */

 int
tm_min; /* minutes */

 int
tm_hour; /* hours */

 int
tm_mday; /* day of the month */

 int
tm_mon; /* month */

 int
tm_year; /* year */

 int
tm_wday; /* day of the week */

 int
tm_yday; /* day in the year */

 int
tm_isdst; /* daylight saving time */

 };

The members of the tm structure are:

tm_sec

The number of seconds after the minute, normally in the range 0 to 59, but can be up to 60 to allow for leap seconds.

tm_min

The number of minutes after the hour, in the range 0 to 59.

tm_hour

The number of hours past midnight, in the range 0 to 23.

tm_mday

The day of the month, in the range 1 to 31.

tm_mon

The number of months since January, in the range 0 to 11.

tm_year

The number of years since 1900.

tm_wday

The number of days since Sunday, in the range 0 to 6.

tm_yday

The number of days since January 1, in the range 0 to 365.

tm_isdst

A flag that indicates whether daylight saving time is in effect at the time described. The value is positive if daylight saving time is in effect, zero if it is not, and negative if the information is not available.

The call ctime(t) is equivalent to asctime(localtime(t)). It converts the calendar time t into a string of the form "Wed Jun 30 21:49:08 1993\n".The abbreviations for the days of the week are ‘Sun’, ‘Mon’, ‘Tue’,‘Wed’,‘Thu’,‘Fri’, and ‘Sat’. The abbreviations for the months are ‘Jan’, ‘Feb’, ‘Mar’, ‘Apr’, ‘May’, ‘Jun’, ‘Jul’, ‘Aug’, ‘Sep’, ‘Oct’, ‘Nov’, and ‘Dec’. The return value points to a statically allocated string which might be overwritten by subsequent calls to any of the date and time functions.

The gmtime() function converts the calendar time timep to broken-down time representation, expressed in Coordinated Universal Time (UTC). It may return NULL when the year does not fit into an integer. The return value points to a statically allocated struct which might be overwritten by subsequent calls to any of the date and time functions.

The localtime() function converts the calendar time timep to broken time representation, expressed relative to the user’s specified time zone.

The asctime() function converts the broken-down time value tm into a string with the same format as ctime(). The return value points to a statically allocated string which might be overwritten by subsequent calls to any of the date and time functions.

The mktime() function converts a broken-down time structure, expressed as local time, to calendar time representation. The function ignores the specified contents of the structure members tm_wday and tm_yday and recomputes them from the other information in the broken-down time structure.

RETURN VALUE

Each of these functions returns the value described, or NULL (-1 in case of mktime()) in case an error was detected.

28)EXIT

exit - cause normal process termination

SYNOPSIS

#include <stdlib.h>

void exit(int status);

DESCRIPTION

The exit() function causes normal process termination and the value of status & 0377 is returned to the parent. All open streams are flushed and closed. Files created by tmpfile() are removed. The C standard specifies two constants, EXIT_SUCCESS and EXIT_FAILURE, that may be passed to exit() to indicate successful or unsuccessful termination, respectively.

RETURN VALUE

The exit() function does not return.

29)GETPID AND GETPPID

getpid, getppid - get process identification

SYNOPSIS

#include <sys/types.h>

#include <unistd.h>

pid_t getpid(void);

pid_t getppid(void);

DESCRIPTION

getpid() returns the process ID of the current process. (This is often used by routines that generate

unique temporary filenames.)

RETURN VALUE

 getppid() returns the process ID of the parent of the current process.

29)GETUID and GETEUID

getuid, geteuid - get user identity

SYNOPSIS

#include <unistd.h>

#include <sys/types.h>

uid_t getuid(void);

uid_t geteuid(void);

DESCRIPTION

getuid() returns the real user ID of the current process.

geteuid() returns the effective user ID of the current process.

30)GETGID and GETEGID

getgid, getegid - get group identity

SYNOPSIS

#include <unistd.h>

#include <sys/types.h>

gid_t getgid(void);

gid_t getegid(void);

DESCRIPTION

getgid() returns the real group ID of the current process.

getegid() returns the effective group ID of the current process.

31)FORK

fork - create a child process

SYNOPSIS

#include <sys/types.h>

#include <unistd.h>

pid_t fork(void);

DESCRIPTION

fork() creates a child process that differs from the parent process only in its PID and PPID, and in the fact that resource utilizations are set to 0. File locks and pending signals are not inherited.

Under Linux, fork() is implemented using copy-on-write pages, so the only penalty that it incurs is the time and memory required to duplicate the parent’s page tables, and to create a unique task structure for the child.

RETURN VALUE

On success, the PID of the child process is returned in the parent’s thread of execution, and a 0 is returned in the child’s thread of execution. On failure, a -1 will be returned in the parent’s context,no child process will be created.

32)WAIT and WAITPID

wait, waitpid - wait for process to change state

SYNOPSIS

#include <sys/types.h>

#include <sys/wait.h>

pid_t wait(int *status);

pid_t waitpid(pid_t pid, int *status, int options);

DESCRIPTION

All of these system calls are used to wait for state changes in a child of the calling process, and obtain information about the child whose state has changed. A state change is considered to be: the child terminated; the child was stopped by a signal; or the child was resumed by a signal. In the case of a terminated child, performing a wait allows the system to release the resources associated with the child; if a wait is not performed, then terminated the child remains in a "zombie" state

 wait() and waitpid()

The wait() system call suspends execution of the current process until one of its children terminates.The call wait(&status) is equivalent to: waitpid(-1, &status, 0);

The waitpid() system call suspends execution of the current process until a child specified by pid argument has changed state. By default, waitpid() waits only for terminated children, but this behaviour is modifiable via the options argument, as described below.

The value of pid can be:

< -1 meaning wait for any child process whose process group ID is equal to the absolute value of pid.

-1 meaning wait for any child process.

 0 meaning wait for any child process whose process group ID is equal to that of the calling process.

> 0 meaning wait for the child whose process ID is equal to the value of pid.

The value of options is an OR of zero or more of the following constants:

WNOHANG

return immediately if no child has exited.

WUNTRACED

also return if a child has stopped (but not traced via ptrace()). Status for traced children which have stopped is provided even if this option is not specified.

WCONTINUED

also return if a stopped child has been resumed by delivery of SIGCONT.

If status is not NULL, wait() and waitpid() store status information in the int to which it points.This integer can be inspected with the following macros (which take the integer itself as an argument, not a pointer to it, as is done in wait() and waitpid()!):

WIFEXITED(status)

returns true if the child terminated normally, that is, by calling exit() or _exit(), or by returning from main().

WEXITSTATUS(status)

returns the exit status of the child. This consists of the least significant 16-8 bits of the status argument that the child specified in a call to exit() or _exit() or as the argument for a return statement in main(). This macro should only be employed if WIFEXITED returned true.

WIFSIGNALED(status)

returns true if the child process was terminated by a signal.

WTERMSIG(status)

returns the number of the signal that caused the child process to terminate. This macro should only be employed if WIFSIGNALED returned true.

WCOREDUMP(status)

returns true if the child produced a core dump. This macro should only be employed if WIFSIGNALED returned true. This macro is not specified in POSIX.1-2001 and is not available on some Unix implementations (e.g., AIX, SunOS). Only use this enclosed in #ifdef WCOREDUMP ... #endif.

WIFSTOPPED(status)

returns true if the child process was stopped by delivery of a signal; this is only possible if the call was done using WUNTRACED or when the child is being traced.

WSTOPSIG(status)

returns the number of the signal which caused the child to stop. This macro should only be employed if WIFSTOPPED returned true.

WIFCONTINUED(status)

returns true if the child process was resumed by delivery of SIGCONT.

RETURN VALUE

wait(): on success, returns the process ID of the terminated child; on error, -1 is returned.

waitpid(): on success, returns the process ID of the child whose state has changed; on error, -1 is returned; if WNOHANG was specified and no child(ren) specified by pid has yet changed state, then 0 is returned.

33)EXECL,EXECV,EXECLP,EXECVP and EXECLE

execl, execlp, execle, execv, execvp - execute a file

SYNOPSIS

#include <unistd.h>

extern char **environ;

int execl(const char *path, const char *arg, ...);

int execlp(const char *file, const char *arg, ...);

int execle(const char *path, const char *arg, ..., char * const envp[]);

int execv(const char *path, char *const argv[]);

int execvp(const char *file, char *const argv[]);

DESCRIPTION

The exec() family of functions replaces the current process image with a new process image. The functions described in this manual page are front-ends for the function execve().

The initial argument for these functions is the pathname of a file which is to be executed.

The const char *arg and subsequent ellipses in the execl(), execlp(), and execle() functions can be thought of as arg0, arg1, ..., argn. Together they describe a list of one or more pointers to nullterminated strings that represent the argument list available to the executed program. The first argument,by convention, should point to the filename associated with the file being executed. The list of arguments must be terminated by a NULL pointer, and, since these are variadic functions, this pointer must be cast (char *) NULL.

The execv() and execvp() functions provide an array of pointers to null-terminated strings that represent the argument list available to the new program. The first argument, by convention, should point to the filename associated with the file being executed. The array of pointers must be terminated by a NULL pointer.

The execle() function also specifies the environment of the executed process by following the NULL pointer that terminates the list of arguments in the parameter list or the pointer to the argv array with an additional parameter.This additional parameter is an array of pointers to null-terminated strings and must be terminated by a NULL pointer. The other functions take the environment for the new process image from the external variable environ in the current process.

Some of these functions have special semantics.

The functions execlp() and execvp() will duplicate the actions of the shell in searching for an executable file if the specified filename does not contain a slash (/) character. The search path is the path specified in the environment by the PATH variable. If this variable isn’t specified, the default path ‘‘:/bin:/usr/bin’’ is used. In addition, certain errors are treated specially.

RETURN VALUE

If any of the exec() functions returns, an error will have occurred. The return value is -1, and the global variable errno will be set to indicate the error.

34)EXECVE

execve - execute program

SYNOPSIS

#include <unistd.h>

int execve(const char *filename, char *const argv[], char *const envp[]);

DESCRIPTION

execve() executes the program pointed to by filename. filename must be either a binary executable, or a script starting with a line of the form "#! interpreter [arg]". In the latter case, the interpreter must be a valid pathname for an executable which is not itself a script, which will be invoked as interpreter[arg] filename.

argv is an array of argument strings passed to the new program. envp is an array of strings, conventionally of the form key=value, which are passed as environment to the new program. Both argv and envp must be terminated by a null pointer. The argument vector and environment can be accessed by the called program’s main function, when it is defined as int main(int argc, char *argv[], char *envp[]).

execve() does not return on success, and the text, data, bss, and stack of the calling process are overwritten by that of the program loaded. The program invoked inherits the calling process’s PID, and any open file descriptors that are not set to close-on-exec. Signals pending on the calling process are cleared. Any signals set to be caught by the calling process are reset to their default behaviour. The SIGCHLD signal (when set to SIG_IGN) may or may not be reset to SIG_DFL.

If the current program is being ptraced, a SIGTRAP is sent to it after a successful execve().

If the set-user-ID bit is set on the program file pointed to by filename, and the calling process is not being ptraced, then the effective user ID of the calling process is changed to that of the owner of the program file.Similarly, when the set-group-ID bit of the program file is set the effective group ID of the calling process is set to the group of the program file.

The effective user ID of the process is copied to the saved set-user-ID; similarly, the effective group ID is copied to the saved set-group-ID. This copying takes place after any effective ID changes that occur because of the set-user-ID and set-group-ID permission bits.

If the executable is an a.out dynamically-linked binary executable containing shared-library stubs, the Linux dynamic linker ld.so(8) is called at the start of execution to bring needed shared libraries into memory and link the executable with them.

If the executable is a dynamically-linked ELF executable, the interpreter named in the PT_INTERP segment is used to load the needed shared libraries. This interpreter is typically /lib/ld-linux.so.1 for binaries linked with the Linux libc version 5, or /lib/ld-linux.so.2 for binaries linked with the GNU libc version2.

RETURN VALUE

On success, execve() does not return, on error -1 is returned, and errno is set appropriately.

35)SYSTEM

system - execute a shell command

SYNOPSIS

#include <stdlib.h>

int system(const char *command);

DESCRIPTION

system() executes a command specified in command by calling /bin/sh -c command, and returns after the command has been completed. During execution of the command, SIGCHLD will be blocked, and SIGINT and SIGQUIT will be ignored.

RETURN VALUE

The value returned is -1 on error (e.g. fork() failed), and the return status of the command otherwise.This latter return status is in the format specified in wait(2). Thus, the exit code of the command will be WEXITSTATUS(status). In case /bin/sh could not be executed, the exit status will be that of a command that does exit(127).

If the value of command is NULL, system() returns non-zero if the shell is available, and zero if not.

system() does not affect the wait status of any other children.

36)GETLOGIN

getlogin - get user name

SYNOPSIS

#include <unistd.h>

char *getlogin(void);

DESCRIPTION

getlogin() returns a pointer to a string containing the name of the user logged in on the controlling

 terminal of the process, or a null pointer if this information cannot be determined.

RETURN VALUE

getlogin() returns a pointer to the user name when successful, and NULL on failure.

37)SIGNAL

signal - ANSI C signal handling

SYNOPSIS

#include <signal.h>

typedef void (*sighandler_t)(int);

sighandler_t signal(int signum, sighandler_t handler);

DESCRIPTION

The signal() system call installs a new signal handler for the signal with number signum. The signal handler is set to sighandler which may be a user specified function, or either SIG_IGN or SIG_DFL.

Upon arrival of a signal with number signum the following happens. If the corresponding handler is set to SIG_IGN, then the signal is ignored. If the handler is set to SIG_DFL, then the default action associated with the signal occurs. Finally, if the handler is set to a function sighandler then first either the handler is reset to SIG_DFL or an implementation-dependent blocking of the signal is performed and next sighandler is called with argument signum.

Using a signal handler function for a signal is called "catching the signal". The signals SIGKILL and SIGSTOP cannot be caught or ignored.

RETURN VALUE

The signal() function returns the previous value of the signal handler, or SIG_ERR on error.

38)KILL

kill - send signal to a process

SYNOPSIS

#include <sys/types.h>

#include <signal.h>

int kill(pid_t pid, int sig);

DESCRIPTION

The kill() system call can be used to send any signal to any process group or process.

If pid is positive, then signal sig is sent to pid.

If pid equals 0, then sig is sent to every process in the process group of the current process.

If pid equals -1, then sig is sent to every process for which the calling process has permission to send signals, except for process 1 (init), but see below.

If pid is less than -1, then sig is sent to every process in the process group -pid.

If sig is 0, then no signal is sent, but error checking is still performed.

For a process to have permission to send a signal it must either be privileged (under Linux: have the CAP_KILL capability), or the real or effective user ID of the sending process must equal the real or saved set-user-ID of the target process. In the case of SIGCONT it suffices when the sending and receiving processes belong to the same session.

RETURN VALUE

On success (at least one signal was sent), zero is returned. On error, -1 is returned, and errno is set appropriately.

39)ALARM

alarm - set an alarm clock for delivery of a signal

SYNOPSIS

#include <unistd.h>

unsigned int alarm(unsigned int seconds);

DESCRIPTION

alarm() arranges for a SIGALRM signal to be delivered to the process in seconds seconds.

If seconds is zero, no new alarm() is scheduled.

In any event any previously set alarm() is cancelled.

RETURN VALUE

alarm() returns the number of seconds remaining until any previously scheduled alarm was due to be delivered, or zero if there was no previously scheduled alarm.

40)SLEEP

sleep - Sleep for the specified number of seconds

SYNOPSIS

#include <unistd.h>

unsigned int sleep(unsigned int seconds);

DESCRIPTION

sleep() makes the current process sleep until seconds seconds have elapsed or a signal arrives which is not ignored.

RETURN VALUE

Zero if the requested time has elapsed, or the number of seconds left to sleep.

41)SELECT

select- synchronous I/O multiplexing

SYNOPSIS

 /* According to POSIX.1-2001 */

#include <sys/select.h>

/* According to earlier standards */

#include <sys/time.h>

#include <sys/types.h>

#include <unistd.h>

int select(int nfds, fd_set *readfds, fd_set *writefds,fd_set *exceptfds,

struct timeval *timeout);

DESCRIPTION

select() allows a program to monitor multiple file descriptors, waiting until one or more of the file descriptors become "ready" for some class of I/O operation (e.g., input possible). A file descriptor is considered ready if it is possible to perform the corresponding I/O operation without blocking.

(i) select() uses a timeout that is a struct timeval (with seconds and microseconds).

(ii) select() may update the timeout argument to indicate how much time was left.

(iii) select() has no sigmask argument.

RETURN VALUE

On success, select() returns the number of file descriptors contained in the three return descriptor sets (that is, the total number of bits that are set in readfds, writefds, exceptfds) which may be zero if the timeout expires before anything interesting happens. On error, -1 is returned.

42)POLL

poll - wait for some event on a file descriptor

SYNOPSIS

#include <poll.h>

int poll(struct pollfd *fds, nfds_t nfds, int timeout);

DESCRIPTION

poll() performs a similar task to select(): it waits for one of a set of file descriptors to become ready to perform I/O. The set of file descriptors to be monitored is specified in the fds argument, which is an array of nfds structures of the following form:

struct pollfd {

int fd; /* file descriptor */

short events; /* requested events */

short revents; /* returned events */

 };

The field fd contains a file descriptor for an open file.

The field events is an input parameter, a bitmask specifying the events the application is interested in.

The field revents is an output parameter, filled by the kernel with the events that actually occurred. The bits returned in revents can include any of those specified in events, or one of the values POLLERR,POLLHUP, or POLLNVAL. (These three bits are meaningless in the events field, and will be set in the revents field whenever the corresponding condition is true.)

If none of the events requested (and no error) has occurred for any of the file descriptors, then poll()

blocks until one of the events occurs.

The timeout argument specifies an upper limit on the time for which poll() will block, in millisecond Specifying a negative value in timeout means an infinite timeout.

The bits that may be set/returned in events and revents are defined in <poll.h>:

POLLIN

There is data to read.

POLLPRI

There is urgent data to read (e.g., out-of-band data on TCP socket; pseudo-terminal master in packet mode has seen state change in slave).

POLLOUT

Writing now will not block.

POLLRDHUP

Stream socket peer closed connection, or shut down writing half of connection. The _GNU_SOURCE feature test macro must be defined in order to obtain this definition.

POLLERR

Error condition (output only).

POLLHUP

Hang up (output only).

POLLNVAL

Invalid request: fd not open (output only). When compiling with _XOPEN_SOURCE defined, one also has the following, which convey no further information beyond the bits listed above:

POLLRDNORM

Equivalent to POLLIN.

POLLRDBAND

Priority band data can be read (generally unused on Linux).

POLLWRNORM

Equivalent to POLLOUT.

POLLWRBAND

Priority data may be written.

RETURN VALUE

On success, a positive number is returned; this is the number of structures which have non-zero revents fields (in other words, those descriptors with events or errors reported). A value of 0 indicates that the call timed out and no file descriptors were ready. On error, -1 is returned,

41)PIPE

pipe - create pipe

SYNOPSIS

#include <unistd.h>

int pipe(int filedes[2]);

DESCRIPTION

pipe() creates a pair of file descriptors, pointing to a pipe inode, and places them in the array pointed to by filedes. filedes[0] is for reading, filedes[1] is for writing.

RETURN VALUE

On success, zero is returned. On error, -1 is returned.

42)POPEN and PCLOSE

popen, pclose - process I/O

SYNOPSIS

#include <stdio.h>

FILE *popen(const char *command, const char *type);

int pclose(FILE *stream);

DESCRIPTION

The popen() function opens a process by creating a pipe, forking, and invoking the shell. Since a pipe is by definition unidirectional, the type argument may specify only reading or writing, not both; the resulting stream is correspondingly read-only or write-only.

The command argument is a pointer to a null-terminated string containing a shell command line.

The type argument is a pointer to a null-terminated string which must be either ‘r’ for reading or ‘w’ for writing.

The return value from popen() is a normal standard I/O stream in all respects save that it must be closed with pclose() rather than fclose(). Writing to such a stream writes to the standard input of the command; the command’s standard output is the same as that of the process that called popen(), unless this is altered by the command itself. Conversely, reading from a ‘‘popened’’ stream reads the command’s standard output, and the command’s standard input is the same as that of the process that called popen().

Note that output popen() streams are fully buffered by default.

The pclose() function waits for the associated process to terminate and returns the exit status of the command as returned by wait4().

RETURN VALUE

The popen() function returns NULL if the fork() or pipe() calls fail, or if it cannot allocate memory.

The pclose() function returns -1 if wait4() returns an error, or some other error is detected.

Sockets

Definition:

An Internet socket (or commonly, a network socket or socket), is an end-point of a bidirectional process-to-process communication flow across an IP based network, such as the Internet. Each socket is mapped to an application process or thread.

Socket interfaces are available on Linux. Now socket interfaces are made available for for Windows via a publicly available specification called Window Socket, or WinSock.

How Socket is identified?

An Internet socket is identified by the operating system as a unique combination of the following:

1. Protocol (TCP, UDP or raw IP)

2. Local IP address

3. Local port number

4. Remote IP address (Only for established TCP sockets)

5. Remote port number (Only for established TCP sockets)

Implementation History

Sockets are usually implemented by an API library such as Berkeley sockets, first introduced in 1983. Most implementations are based on Berkeley sockets, for example Winsock introduced 1991. Other socket API implementations exist, such as the STREAMS-based Transport Layer Interface (TLI).

Development of application programs that utilize this API is called socket programming or network programming.

How socket works?

Normally, a server runs on a specific computer and has a socket that is bound to a specific port number. The server just waits, listening to the socket for a client to make a connection request. On the client-side: The client knows the hostname of the machine on which the server is running and the port number on which the server is listening. To make a connection request, the client tries to rendezvous with the server on the server's machine and port. The client also needs to identify itself to the server so it binds to a local port number that it will use during this connection. This is usually assigned by the system.

If everything goes well, the server accepts the connection. Upon acceptance, the server gets a new socket bound to the same local port and also has its remote endpoint set to the address and port of the client. It needs a new socket so that it can continue to listen to the original socket for connection requests while tending to the needs of the connected client.

[image: image1.png]connection

server
client

On the client side, if the connection is accepted, a socket is successfully created and the client can use the socket to communicate with the server.

The client and server can now communicate by writing to or reading from their address.

[image: image2.png]server

connection

client

/

Flow chart representation of client-server model

[image: image3.png]LLIENT

SERVER

st a stream sockt with the sacket()
cal.

Greate a steam socket s wih
ca.

socketl)

(Optona)
Bind socket 0 ocal ackress with the

bind)

Bin socket s 1 2 local acirass wit he
o)

Wit thefsten() cal, alrt he TGP/
machin ofyourwilingness fo accept

Connact sacket to & forsign host wih tre
connect)

‘Accoptthe connection and receive @
second socke,for example s, with the
accopt)

For thesarver, socket & ramsins avalable

o accop newcomnectons. Socketns
deccated o tre clant

Resd and wrta dats on socke . using the
send) an rocv() calls nth al data has
been sxchangea.

s

Raad and write data on socket s, using
he sand() and recw() alls, il al
data has been exchanged.

Close socket and end he TCPIIP sesion
witn e cose() cal.

Close socket s with the clase() cal.

‘Accept ancine conaciion fom aclnt.
orclose 1 original socket s wilhthe
closel)

Steps followed by Client

· Initiates requests

· Waits for replies

· Receives replies

· Usually connects to a small number of servers at one time

· Typically interacts directly with end-users using a graphical user interface

Steps followed by Server

· Never initiates requests or activities

· Waits for and replies to requests from connected clients

· A server can remotely install/uninstall applications and transfer data to the intended clients

These are examples of functions or methods typically provided by the API library,which is used in socket programming:

· socket() creates a new socket of a certain socket type, identified by an integer number, and allocates system resources to it.

· bind() is typically used on the server side, and associates a socket with a socket address structure, i.e. a specified local port number and IP address.

· listen() is used on the server side, and causes a bound TCP socket to enter listening state.

· connect() is used on the client side, and assigns a free local port number to a socket. In case of a TCP socket, it causes an attempt to establish a new TCP connection.

· accept() is used on the server side. It accepts a received incoming attempt to create a new TCP connection from the remote client, and creates a new socket associated with the socket address pair of this connection.

· send() and recv(), or write() and read(), or recvfrom() and sendto(), are used for sending and receiving data to/from a remote socket.

· close() causes the system to release resources allocated to a socket. In case of TCP, the connection is terminated.

Socket Connections

Creating a Socket

socket - create an endpoint for communication

Synopsis

#include <sys/socket.h>

int socket(int domain, int type, int protocol);

Description

The socket() function shall create an unbound socket in a communications domain, and return a file descriptor that can be used in later function calls that operate on sockets.

The socket() function takes the following arguments:

 domain

Specifies the communications domain in which a socket is to be created.

type

Specifies the type of socket to be created.

protocol

Specifies a particular protocol to be used with the socket. Specifying a protocol of 0 causes socket() to use an unspecified default protocol appropriate for the requested socket type.

RETURN VALUE

Upon successful completion, socket() shall return a non-negative integer, the socket file descriptor. Otherwise, a value of -1 shall be returned and errno set to indicate the error.

ERRORS

In case of any error it will return -1.

Binding a Socket

Synopsis

int bind(int sockfd, const struct sockaddr *my_addr, socklen_t addrlen);

Description

 bind() gives the socket sockfd the local address my_addr. my_addr is addrlen

 bytes long. Traditionally, this is called “assigning a name to a socket.” When

 a socket is created with socket(2), it exists in a name space (address family)

 but has no name assigned.

 It is normally necessary to assign a local address using bind() before a

 SOCK_STREAM socket may receive connections

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is set appro-

 priately.

ERRORS

 EACCES The address is protected, and the user is not the superuser.

 EADDRINUSE

 The given address is already in use.

 EBADF sockfd is not a valid descriptor.

 EINVAL The socket is already bound to an address.

 ENOTSOCK

 sockfd is a descriptor for a file, not a socket.

Listening to connections

SYNOPSIS

 int listen(int sockfd, int backlog);

DESCRIPTION

 To accept connections, a socket is first created with socket(2), a willingness

 to accept incoming connections and a queue limit for incoming connections are

 specified with listen(), and then the connections are accepted with accept(2).

 The listen() call applies only to sockets of type SOCK_STREAM or SOCK_SEQPACKET.

 The backlog parameter defines the maximum length the queue of pending connec-

 tions may grow to. If a connection request arrives with the queue full the

 client may receive an error with an indication of ECONNREFUSED or, if the under-

 lying protocol supports retransmission, the request may be ignored so that

 retries succeed.

RETURN VALUE

 On success, zero is returned. On error, -1 is returned, and errno is set appro-

 priately.

ERRORS

 EADDRINUSE

 Another socket is already listening on the same port.

 EBADF The argument sockfd is not a valid descriptor.

 ENOTSOCK

 The argument sockfd is not a socket.

 EOPNOTSUPP

 The socket is not of a type that supports the listen() operation.

Accept the connections

SYNOPSIS

 int accept(int sockfd, struct sockaddr *addr, socklen_t *addrlen);

DESCRIPTION

 The accept() system call is used with connection-based socket types

 (SOCK_STREAM, SOCK_SEQPACKET). It extracts the first connection request on the

 queue of pending connections, creates a new connected socket, and returns a new

 file descriptor referring to that socket. The newly created socket is not in

 the listening state. The original socket sockfd is unaffected by this call.

 The argument sockfd is a socket that has been created with socket(2), bound to a

 local address with bind(2), and is listening for connections after a listen(2).

 The argument addr is a pointer to a sockaddr structure. This structure is

 filled in with the address of the peer socket, as known to the communications

 layer. The exact format of the address returned addr is determined by the

 socket’s address family (see socket(2) and the respective protocol man pages).

 The addrlen argument is a value-result argument: it should initially contain the

 size of the structure pointed to by addr; on return it will contain the actual

 length (in bytes) of the address returned. When addr is NULL nothing is filled

 in.

RETURN VALUE

 On success, accept() returns a non-negative integer that is a descriptor for the

 accepted socket. On error, -1 is returned, and errno is set appropriately.

ERRORS

 accept() shall fail if:

 EAGAIN or EWOULDBLOCK

 The socket is marked non-blocking and no connections are present to be

 accepted.

 EBADF The descriptor is invalid.

 ECONNABORTED

 A connection has been aborted.

 EINTR The system call was interrupted by a signal that was caught before a

 valid connection arrived.

 EINVAL Socket is not listening for connections, or addrlen is invalid (e.g., is

 negative).

 EMFILE The per-process limit of open file descriptors has been reached.

 ENFILE The system limit on the total number of open files has been reached.

 ENOTSOCK

 The descriptor references a file, not a socket.

 EOPNOTSUPP

 The referenced socket is not of type SOCK_STREAM.

Connecting to the server

SYNOPSIS

int connect(int sockfd, const struct sockaddr *serv_addr, socklen_t addrlen);

DESCRIPTION

 The connect() system call connects the socket referred to by the file descriptor

 sockfd to the address specified by serv_addr. The addrlen argument specifies

 the size of serv_addr. The format of the address in serv_addr is determined by

 the address space of the socket sockfd; see socket(2) for further details.

if the socket sockfd is of type SOCK_DGRAM then serv_addr is the address to

 which datagrams are sent by default, and the only address from which datagrams

 are received. If the socket is of type SOCK_STREAM or SOCK_SEQPACKET, this call

 attempts to make a connection to the socket that is bound to the address speci-

 fied by serv_addr.Generally, connection-based protocol sockets may successfully connect() only

 once; connectionless protocol sockets may use connect() multiple times to change

 their association. Connectionless sockets may dissolve the association by con-

 necting to an address with the sa_family member of sockaddr set to AF_UNSPEC.

RETURN VALUE

 If the connection or binding succeeds, zero is returned. On error, -1 is

 returned, and errno is set appropriately.

ERRORS

 The following are general socket errors only. There may be other domain-spe-

 cific error codes.

 EACCES For Unix domain sockets, which are identified by pathname: Write permis-

 sion is denied on the socket file, or search permission is denied for one

 of the directories in the path prefix. (See also path_resolution(2).)

 EACCES, EPERM

 The user tried to connect to a broadcast address without having the

 socket broadcast flag enabled or the connection request failed because of

 a local firewall rule.

 EADDRINUSE

 Local address is already in use.

 EAFNOSUPPORT

 The passed address didn’t have the correct address family in its sa_fam-

 ily field.

 EAGAIN No more free local ports or insufficient entries in the routing cache.

 For PF_INET see the net.ipv4.ip_local_port_range sysctl in ip(7) on how

 to increase the number of local ports.

htonl()

uint32_t htonl(uint32_t hostlong);

This subroutine converts values between the host and network byte order. Specifically, htonl() converts 32-bit (4-byte) quantities from host byte order to network byte order. htonl() returns the network byte order of hostlong

ntohl()

uint32_t ntohl(uint32_t netlong);

This subroutine converts values between the host and network byte order. Specifically, ntohl() converts 32-bit quantities from network byte order to host byte order.

htons()

uint16_t htons(uint16_t hostshort);

This subroutine converts values between the host and network byte order. Specifically, htons() converts 16-bit quantities from host byte order to network byte order. htons() returns the network byte order of hostshort. ntohl() returns the host byte-ordered netlong.

ntohs

uint16_t ntohs(uint16_t netshort);

This subroutine converts values between the host and network byte order. Specifically, ntohs() converts 16-bit quantities from network byte order to host byte order. Specifically, ntohs() converts 32-bit quantities from network byte order to host byte order.

inet_aton,

int inet_aton(const char *cp, struct in_addr *inp);

inet_aton() converts the Internet host address cp from the standard numbers-and-dots notation into binary data and stores it in the structure that inp points to. inet_aton() returns non-zero if the address is valid, zero if not.

inet_ntoa,

char *inet_ntoa(struct in_addr in);

The inet_ntoa() function converts the Internet host address in given in network byte order to a string in standard numbers-and-dots notation. The string is returned in a statically allocated buffer, which subsequent calls will overwrite.

inet_addr

 in_addr_t inet_addr(const char *cp);

 The inet_addr() function converts the Internet host address cp from numbers-and-dots notation into binary data in network byte order. If the input is invalid,INADDR_NONE (usually -1) is returned. This is an obsolete interface to inet_aton(), described immediately above; it is obsolete because -1 is a valid address (255.255.255.255), and inet_aton() provides a cleaner way to indicate error return.

send

 ssize_t send(int s, const void *buf, size_t len, int flags);

The send() call may be used only when the socket is in a connected state (so that the intended recipient is known). The only difference between send() and write() is the presence of flags. With zero flags parameter, send() is equivalent to write(). Also, send(s,buf,len,flags) is equivalent to sendto(s,buf,len,flags,NULL,0).

The parameter s is the file descriptor of the sending socket.

recv

ssize_t recv(int s, void *buf, size_t len, int flags);

recv calls are used to receive messages from a socket, and may be used to receive data on a socket whether or not it is connection-oriented.

The recv() call is normally used only on a connected socket

Example of Single Client-Server program

Server program

#include<unistd.h>

#include<sys/socket.h>

#include<netinet/in.h>

#include<stdio.h>

#include<stdlib.h>

#include<fcntl.h>

#define PORT 10000

int main()

{

 int serverSock,clientSock,fd;

 char filename[256],c;

 struct sockaddr_in addr,addr1;

unsigned length1=sizeof(addr);

 if((serverSock=socket(PF_INET,SOCK_STREAM,0))<0) // Create server socket

 {

 printf("socket error!\n");

 exit(1);

 }

//if socket is created successfully than...

 addr.sin_family=AF_INET;

 addr.sin_port=htons(PORT);

 addr.sin_addr.s_addr=INADDR_ANY;

 //now bind the created socket to ip address

if(bind(serverSock,(struct sockaddr*)&addr,sizeof(addr))<0)

 {

 printf("bind error\n");

 exit(1);

 }

 //if binding is successful than wait for client request

listen(serverSock,5);

 //accept any one client request

clientSock=accept(serverSock,(struct sockaddr*)&addr1,&length1);

 if(clientSock<0)

 {

 printf("accept error!\n");

 exit(1);

 }

 //do read and write operation with accepted client

read(clientSock,filename,256);

 if((fd=open(filename,O_RDONLY,0))>=0)

 {

//open file in read only mode

 while(read(fd,&c,1)) // Read all characters from the file...

write(clientSock,&c,1); // ... and send them to the client

 close(fd);

 }

 close(clientSock);//close client socket

 close(serverSock);//close server socket

 exit(0);

}

Client program

#include<unistd.h>

#include<sys/socket.h>

#include<netinet/in.h>

#include<arpa/inet.h>

#include<stdio.h>

#include<stdlib.h>

#include<stdlib.h>

#define PORT 10000

int main()

{

int sockfd;

char filename[256],c;

if((sockfd=socket(PF_INET,SOCK_STREAM,0))<0) //create one client socket

{

printf(“socket error!\n”);

exit(1);

}

//if creation of client socket is successful than...

addr.sin_family=AF_INET;

addr.sin_port=htons(PORT);

addr.sin_addr.s_addr=inet_addr(“10.0.0.12)

//connect client socket address to server socket address

if(connect(sockfd,(struct sockaddr*)&addr,sizeof(addr))<0)

{

printf(“connect error!\n”);

exit(1);

}

printf(“Enter filename”);

scanf(“%s”,filename);

write(sockfd,filename,256);

//client will read from server and write character by

// character to the standard output of client terminal.

while(read(sockfd,&c,1)==1)

write(1,&c,1);

close(sockfd);//close client socket

exit(0);

}

Multiple Clients

Once socket connections are established ,they behave like low-level open file descriptors and in many ways like bi-directional pipes. When a server accepts a new connection from a client ,a new socket is created and the original listen socket remians available for furthur connections. If the server doesnt immediately accept furthur connections ,they will be held in pending in a queue .

Since the original socket is still available and that sockets behave as file descriptors ,server can call fork to create a second copy of itself,the open socket will be inherited by the new child process. It can then communicate with the connecting client while the main server continues to accept furthur client connections.

Example of Multiple Client -Server:

#include<sys/types.h>

#include<sys/socket.h>

#include<stdio.h>

#include<netinet.in.h>

#include<signal.h>

#include<unistd.h>

int main()

{

int server_sockfd,client_sockfd;

int server_len,client_len;

struct sockaddr_in server_address;

struct sockaddr_in client_address;

if((server_sockfd=socket(PF_INET,SOCK_STREAM,0))<0)

{

printf(“socket error!\n”);

exit(1);

}

server_address.sin_family=AF_INET;

server_address.sin_addr.s_addr=htonl(INADDR_ANY);

server_address.sin_port=htons(9734);

server_len=sizeof(server_address);

bind(server_sockfd,(struct sockaddr*)&server_address,server_len);

listen(server_sockfd,5);

while(1)

{

char ch;

printf(“server waiting\n”);

client_len=sizeof(client_address);

client_sockfd=accept(server_sockfd,(structsockaddr*)&client_address,

&client_len);

//fork out child process to take care of

//different client request

if(fork()==0)

{

// Child process

read(client_sockfd,&ch,1); // Read a character from client

sleep(5);//wait for 5 sec

ch++; // Increment the character ...

write(client_sockfd,&ch,1); // ... and send it to client

close(client_sockfd);

exit(0);

}

else

{

// Parent

close(client_sockfd);

}

}

}

Advantages

· In most cases, a client-server architecture enables the roles and responsibilities of a computing system to be distributed among several independent computers that are known to each other only through a network.

· All the data is stored on the servers, which generally have far greater security controls than most clients.

· Since data storage is centralized, updates to that data are far easier to administer.

· It functions with multiple different clients of different capabilities.

Disadvantages

· The client-server paradigm lacks robustness . Under client-server, should a critical server fail, clients’ requests cannot be fulfilled.

Assignments

1. Write a C program using system calls to implement the “cat” command.

/* cat */

#include <unistd.h>

#include <fcntl.h>

#include <stdio.h>

int main(int argc,char* argv[])

{

 int fd,i;

 char c;

 for(i = 1;i<argc;i++)

 {

 if((fd = open(argv[i],O_RDONLY,0)) < 0)

 {

 printf("Unable to open file: %s\n",argv[i]);

 continue;

 }

 while(read(fd,&c,1) == 1)

 {

 write(1,&c,1);

 }

 close(fd);

 }

 return 0;

}

2. Write a C program to implement the “wc” command.

/* wc */

#include <unistd.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#include <ctype.h>

int main(int argc,char **argv)

{

 char c;

 int fd,i;

 int byteCount=0,lineCount=0,wordCount=0;

 int totalLineCount=0,totalWordCount=0,totalByteCount=0;

 if(argc>1)

 {

 for(i=1;i<argc;i++)

 {

 if ((fd = open(argv[i],O_RDONLY,0)) < 0)

 {

 printf("Inable to open file: %s\n", argv[i]);

 continue;

 }

 while(read(fd,&c,1)==1)

 {

 byteCount++;

 if (isspace(c))

 {

 wordCount++;

 if (c=='\n') lineCount++;

 }

 }

 printf("%s: %d %d %d\n",argv[i], lineCount, wordCount, byteCount);

 totalLineCount+=lineCount;

 totalWordCount+=wordCount;

 totalByteCount+=byteCount;

 lineCount=0;

 wordCount=0;

 byteCount=0;

 close(fd);

 }

 printf("Total: %d %d %d\n", totalLineCount, totalWordCount, totalByteCount);

 }

 else

 {

 printf("No file given!!\n");

 exit(1);

 }

 return 0;

}

3. Write a C program to implement the “cp” command.

/* cp */

#include <unistd.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

int main(int argc,char* argv[])

{

 int sourceFD, destFD;

 char c;

 if (argc != 3)

 {

 printf(“Usage: <program> <source> <dest>\n”);

 exit(1);

 }

 if((sourceFD = open(argv[1],O_RDONLY,0))< 0)

 {

 printf(“Unable to open source file!\n”);

 exit(1);

 }

 if ((destFD = creat(argv[2],0644)) < 0)

 {

 printf(“Unable to open destination file!\n”);

 exit(1);

 }

 while(read(sourceFD,&c,1) == 1)

 {

 write(destFD,&c,1);

 }

 close(sourceFD);

 close(destFD);

 return 0;

}

4. Write a C program to implement the “cp” command with buffers to improve efficiency.

/* cp using buffers */

#include <unistd.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#define BUFSIZE
1000

int main(int argc,char* argv[])

{

 int sourceFD, destFD;

 char buffer[BUFSIZE];

 if (argc != 3)

 {

 printf(“Usage: <program> <source> <dest>\n”);

 exit(1);

 }

 if((sourceFD = open(argv[1],O_RDONLY,0))< 0)

 {

 printf(“Unable to open source file!\n”);

 exit(1);

 }

 if ((destFD = creat(argv[2],0644)) < 0)

 {

 printf(“Unable to open destination file!\n”);

 exit(1);

 }

 while((n = read(sourceFD,buffer,BUFSIZE))>0)

 {

 write(destFD,buffer,n);

 }

 close(sourceFD);

 close(destFD);

 return 0;

}

5. Write a C program to implement the “ls” command.

/* ls */

#include <unistd.h>

#include <dirent.h>

#include <sys/types.h>

#include <stdio.h>

#include <stdlib.h>

int main(int argc,char** argv)

{

 DIR* dp;

 struct dirent *dptr;

 char *dir;

 if (argc == 1) dir = ".";

 else if (argc == 2) dir = argv[1];

 else

 {

 printf("Usage: <program> [directory]\n");

 exit(1);

 }

 if(dp = opendir(dir))

 {

 while(dptr = readdir(dp))

 printf("%s\n",dptr->d_name);

 closedir(dp);

 }

 else

 {

 printf("Unable to open directory: %s\n", dir);

 exit(1);

 }

 return 0;

}

6. Write a C program to implement the “ls -l” command.

/* ls -l */

#include <unistd.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <dirent.h>

#include <time.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main()

{

struct stat sbuf;

DIR* dp;

struct dirent *dptr;

char perm[15];

char type;

char time[50];

dp = opendir(".");

while((dptr = readdir(dp))!=NULL)

{

stat(dptr->d_name,&sbuf);

strcpy(perm,"");

if(S_ISLNK(sbuf.st_mode)) type='l';

else if(S_ISREG(sbuf.st_mode)) type='-';

else if(S_ISDIR(sbuf.st_mode)) type='d';

else if(S_ISCHR(sbuf.st_mode)) type='c';

else if(S_ISBLK(sbuf.st_mode)) type='b';

else if(S_ISSOCK(sbuf.st_mode)) type='s';

else if(S_ISFIFO(sbuf.st_mode)) type='f';

if(sbuf.st_mode & S_IRUSR) strcat(perm, "r");

else strcat(perm,"-");

 if(sbuf.st_mode & S_IWUSR) strcat(perm, "w");

else strcat(perm,"-");

if(sbuf.st_mode & S_IXUSR) strcat(perm, "x");

else strcat(perm,"-");

if(sbuf.st_mode & S_IRGRP) strcat(perm, "r");

else strcat(perm,"-");

 if(sbuf.st_mode & S_IWGRP) strcat(perm, "w");

else strcat(perm,"-");

if(sbuf.st_mode & S_IXGRP) strcat(perm, "x");

else strcat(perm,"-");

if(sbuf.st_mode & S_IROTH) strcat(perm, "r");

else strcat(perm,"-");

 if(sbuf.st_mode & S_IWOTH) strcat(perm, "w");

else strcat(perm,"-");

if(sbuf.st_mode & S_IXOTH) strcat(perm, "x");

else strcat(perm,"-");

strcpy(time,ctime(&sbuf.st_mtime));

time[strlen(time)-1] = '\0';

printf("%c%s %-3d %-5u %-5u %-8d %s %s\n", type, perm, sbuf.st_nlink, sbuf.st_uid, sbuf.st_gid, sbuf.st_size, time, dptr->d_name);

}

return 0;

}

7. Write a C program to implement a simple shell.

/* Implementation of a simple shell */

#include <unistd.h>

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

int main()

{

 char cmd[1000];

 printf("[shell]$ ");

 while (fgets(input, 1000, stdin))

 {

 if (cmd[strlen(cmd)-1] == '\n') cmd[strlen(cmd)-1] = '\0';

 if(fork() == 0)

 {

 execlp(cmd,cmd,NULL); /* Try in the standard PATH */

 execl(cmd,cmd,NULL); /* Try elsewhere */

 printf("%s: Command not found\n",cmd);

 exit(1);

 }

 else

 {

 wait(NULL);

 printf("[shell]$ ");

 }

 }

 exit(0);

}

8. Write a C program to implement a simple recurring alarm.

#include <sys/types.h>

#include <signal.h>

#include <stdio.h>

static void display(int);

int main()

{

signal(SIGALRM,display);

alarm(1);

while(1);

}

void display(int i)

{

printf("Hello\n");

alarm(1);

}

9. Write a C program to implement “cat” over the network using sockets.

/* Server */

#include<unistd.h>

#include <sys/socket.h>

#include<netinet/in.h>

#include<sys/types.h>

#include<fcntl.h>

#include<stdio.h>

#include<stdlib.h>

#define PORT 7010

int main()

{

 char filename[256],c;

 int serverSock,clientSock,fd;

 struct sockaddr_in addr;

 unsigned length = sizeof(addr);

 if((serverSock = socket(PF_INET,SOCK_STREAM,0))<0)

 {

 printf("Server socket creation error!\n");

 exit(1);

 }

 addr.sin_family = AF_INET;

 addr.sin_port = htons(PORT);

 addr.sin_addr.s_addr = INADDR_ANY;

 if((bind(serverSock,(struct sockaddr*)&addr,sizeof(addr)))<0)

 {

 printf("Bind failed!\n");

 exit(1);

 }

 if(listen(serverSock,5)<0)

 {

 printf("Listen failed!\n");

 exit(1);

 }

 while(1)

 {

 printf("server waiting for client\n");

 if((clientSock = accept(serverSock,(struct sockaddr*)&addr,&length))<0)

 {

 printf("Accept failed!\n");

 exit(1);

 }

 read(clientSock,filename,256);

 if((fd = open(filename,O_RDONLY,0)))

 {

 while(read(fd,&c,1)==1)

 {

 write(clientSock,&c,1);

 }

 }

 else

 printf("Open failed!\n");

 close(clientSock);

 }

 close(serverSock);

 return 0;

}

/* Client */

#include<unistd.h>

#include <sys/socket.h>

#include<netinet/in.h>

#include <arpa/inet.h>

#include<sys/types.h>

#include<stdio.h>

#include<stdlib.h>

#define PORT 7010

#define SERVER_IP_ADDRESS "10.0.0.12"

int main()

{

 char filename[256],c;

 int clientSock,fd;

 struct sockaddr_in addr;

 if((clientSock = socket(PF_INET,SOCK_STREAM,0))<0)

 {

 printf("Socket creation error!\n");

 exit(1);

 }

 addr.sin_family = AF_INET;

 addr.sin_port = htons(PORT);

 addr.sin_addr.s_addr = inet_addr(SERVER_IP_ADDRESS);

 if(connect(clientSock,(struct sockaddr*)&addr,sizeof(addr))<0)

 {

 printf("Connect failed!\n");

 exit(1);

 }

 printf("Enter filename: ");

 scanf("%s",filename);

 write(clientSock,filename,256);

 while(read(clientSock,&c,1)==1)

 {

 write(1,&c,1);

 }

 close(clientSock);

 return 0;

}

10. Write a C program to implement a factorial server and client using sockets.

/* Server */

#include<unistd.h>

#include<sys/socket.h>

#include<netinet/in.h>

#include<stdio.h>

#include<stdlib.h>

#define PORT 7010

int fact(int n);

int main()

{

int serverSock,clientSock;

int n, factorial;

struct sockaddr_in addr;

unsigned length=sizeof(addr);

if((serverSock=socket(PF_INET,SOCK_STREAM,0))<0)

{

printf("socket error!\n");

exit(1);

}

addr.sin_family=AF_INET;

addr.sin_port=htons(PORT);

addr.sin_addr.s_addr=INADDR_ANY;

if(bind(serverSock,(struct sockaddr*)&addr,sizeof(addr))<0)

{

printf("bind error\n");

exit(1);

}

listen(serverSock,5);

if ((clientSock=accept(serverSock,(struct sockaddr*)&addr,&length)) < 0)

{

printf("accept error!\n");

exit(1);

}

read(clientSock, &n, sizeof(n));

n = ntohl(n);

factorial = fact(n);

factorial = htonl(factorial);

write(clientSock, &factorial, sizeof(factorial));

close(serverSock);

close(clientSock);

}

int fact(int n)

{

int i, factorial = 1;

for (i=2; i<=n; i++)

{

factorial *= i;

}

return factorial;

}

/* Client */

#include<unistd.h>

#include<sys/socket.h>

#include<netinet/in.h>

#include<arpa/inet.h>

#include<stdio.h>

#include<stdlib.h>

#define PORT 7010

#define SERVER_IP_ADDRESS "10.0.0.12"

int main()

{

 int sockfd;

 int factorial;

 int n;

 struct sockaddr_in addr;

 if((sockfd=socket(PF_INET,SOCK_STREAM,0))<0)

 {

 printf("Socket error!\n");

 exit(1);

 }

 addr.sin_family=AF_INET;

 addr.sin_port=htons(PORT);

 addr.sin_addr.s_addr=inet_addr(SERVER_IP_ADDRESS);

 if(connect(sockfd,(struct sockaddr*)&addr,sizeof(addr))<0)

 {

 printf("Connect error!\n");

 exit(1);

 }

 printf("Enter the number to find the factorial:");

 scanf("%d",&n);

 n = htonl(n);

 write(sockfd, &n, sizeof(n));

 read(sockfd, &factorial, sizeof(factorial));

 factorial = ntohl(factorial);

 printf("Factorial: %d\n",factorial);

 close(sockfd);

 exit(0);

}

Page: 1

